# cube.obj # Import into Blender with Y-forward, Z-up # # Vertices: Faces: # f-------g +-------+ # /. /| /. 5 /| 3 back # / . / | / . / | # e-------h | 2 +-------+ 1| # | b . .|. c z right | . . .|. + # | . | / | /y | . 4 | / # |. |/ |/ |. |/ # a-------d +---- x +-------+ # 6 # bottom g cube # Vertices v 0.0 0.0 0.0 # 1 a v 0.0 1.0 0.0 # 2 b v 1.0 1.0 0.0 # 3 c v 1.0 0.0 0.0 # 4 d v 0.0 0.0 1.0 # 5 e v 0.0 1.0 1.0 # 6 f v 1.0 1.0 1.0 # 7 g v 1.0 0.0 1.0 # 8 h # Normal vectors # One for each face. Shared by all vertices in that face. vn 1.0 0.0 0.0 # 1 cghd vn -1.0 0.0 0.0 # 2 aefb vn 0.0 1.0 0.0 # 3 gcbf vn 0.0 -1.0 0.0 # 4 dhea vn 0.0 0.0 1.0 # 5 hgfe vn 0.0 0.0 -1.0 # 6 cdab # Faces v/vt/vn # 3-------2 # | - | # | # | Each face = 2 triangles (ccw) # | - | = 1-2-3 + 1-3-4 # 4-------1 # Face 1: cghd = cgh + chd f 3//1 7//1 8//1 f 3//1 8//1 4//1 # Face 2: aefb = aef + afb f 1//2 5//2 6//2 f 1//2 6//2 2//2 # Face 3: gcbf = gcb + gbf f 7//3 3//3 2//3 f 7//3 2//3 6//3 # Face 4: dhea = dhe + dea f 4//4 8//4 5//4 f 4//4 5//4 1//4 # Face 5: hgfe = hgf + hfe f 8//5 7//5 6//5 f 8//5 6//5 5//5 # Face 6: cdab = cda + cab f 3//6 4//6 1//6 f 3//6 1//6 2//6